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Data Mining for Identification of Forkhead Box O3 
(FOXO3a) in Different Organisms Using Nucleotide 
and Tandem Repeat Sequences

Background: Deregulation of FOXO3a gene which belongs to Forkhead box O (FOXO) transcription 
factors, can cause cancer (e.g. breast cancer). FOXO factors have important role in ubiquitination, 
acetylation, de-acetylation, protein-protein interactions and phosphorylation. Understanding the 
regulation and mechanisms of FOXO3a can lead to cancer treatment. The aim of this study recent 
association of data mining with genetics has provided a strong tool for knowledge discovery. 

Materials and Methods: Using genetics and bioinformatics, 30 sequences of FOXO3a genes were 
extracted from different species and were used in two datasets including 65 nucleotide features and 
51 tandem repeat sequences. Then, we used different feature weighting and decision tree data mining 
algorithms on these datasets. 

Results: Among nucleotide features, the frequency of AA dinucleotide was the most important 
genomic feature for FOXO3a gene identification. Among tandem repeat sequences, the strings of 
TTTTTTTTT, GAGGAGGAG, CGGCGGCGGCGG and CGGCGGCGGCGGCGG were the most 
effective ones to distinguish FOXO3A gene between different species. 

Conclusion: The results of this study are important in understanding FOXO3a gene and developing a 
pathway for cancer and gene therapies in humans.
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Introduction

orkhead transcription Factors (FOXs) show 
specific patterns in cell cycle control, anxi-
ety response, differentiation, and apoptosis 
[1]. There are more than 100 proteins in the 

forkhead transcription factors of the O subgroup (FOXO). 
This subgroup contains four members: FOXO6, FOXO4, 
FOXO1, and FOXO3a. FOXO proteins were first detected 
in certain tumors of humans at chromosomal rearrange-
ments [2]. FOXO genes are involved in many signaling F
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pathways and play crucial role in pathological and physi-
ological processes. 

Adjustment of the transcriptional and subcellular local-
ization activity of FOXO protein is made primarily by 
posttranslational modifications, such as acetylation and 
phosphorylation [3]. The PI3K-Akt pathway is mainly 
involved in cellular processes including tumor suppres-
sion, cell cycle arrest, cell death, cell differentiation, 
metabolism, and protection against stress. Three sites on 
FOXO proteins are phosphorylated by Akt, resulting in 
nuclear exclusion and inactivation, which are related to 
cancer progression and tumorigenesis [4].

FKHRL1 (FOXO3) belongs to the FOX family [5]. 
Bioinformatics techniques (such as data mining in mo-
lecular biology, extraction of beneficial outcome from 
large amounts of raw data, genetics and genomics) help 
in sequencing and showing their observed mutations. 
Some of the tandem repeats such as (CT)n and (CA)n 
near specific genes may affect the expression of genes. 
Tandem repeats are used at different levels of biologi-
cal structure. Most of them remain unknown; thus, for 
finding out their biological functions, they should be 
examined further. In different tumor tissues, abnormal 
expression of FOXO3a has been detected [1]. In this 
regard, we evaluated different tandem repeat sequences 
and nucleotide features in this study to identify FOXO3a 
gene in different organisms. 

Materials & Methods

Database preparation and gene features

Thirty FOXO3a genes from different samples (human, 
animal) were extracted from the NCBI database includ-
ing 65 gene features (e.g. weight/length/frequency of 
nucleotides, salt concentration). The information was 
extracted using trial CLC Main Workbench software and 
imported to RapidMiner GmbH 7.1.1 software.

Feature weighting

Feature weighting is a data pre-processing method and 
an alternative to keeping or eliminating an attribute in 
data mining methods, such as classification and cluster-
ing algorithms [6]. These models include 10 different 
operators.

Weight by information gain

The weight determines the feature’s relevance to the data 
gain ratio and, hence, specifies the weight of a feature.

Weight by rule

Through creating a rule for every attribute and mea-
suring the errors, the weight determines the attribute’s 
relevance to an example set; however, this operator can 
be used only with a nominal label.

Weight by the average value

This operator applies a database of examples for char-
acterizing a class by assigning weights to the features. 
The characteristic features are assigned higher weights 
in comparison with less characteristic features. For as-
signing a weight to a feature, the average weight value is 
measured for all target class examples.

Weight by deviation

In this operator, the relevance of attributes to an exam-
ple set is determined based on their standard deviations. 
The higher weight of an attribute is an indicative of more 
relevance. We can normalize the standard deviations 
by average, maximum, or minimum of the attribute; it 
should be noted that this operator is applied only on Ex-
ampleSets with a numerical label.

Weight by correlation 

The relevance of attributes is determined by examining 
the correlation for every feature of the input ExampleSet 
relative to the label attribute. This scheme which is based 
on the correlation, presents the squared or absolute value 
of correlation as attribute weight. This operator can be 
applied on sets with binominal or numerical labels.

Weight by chi-squared statistic

This operator allocates user-defined weights to the at-
tributes, which are selected with regular expressions.

Weight by Gini index

As a measure of impurity in an ExampleSet, this 
scheme determines the attribute’s relevance with respect 
to the Gini impurity index. The higher weight of an at-
tribute is associated with greater relevance; this measure 
can be used for ExampleSets with nominal labels.

Weight by relief

This operator measures the attribute’s relevance by re-
lief. The main idea is to determine the attribute’s quality 
considering how well its value discriminates between 
similar and different classes near each other. The rela-
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tion of features is determined by sampling examples and 
comparing the value of the feature with the nearest ex-
amples of different and same classes. It also can be ap-
plied to various classes and regression datasets. The ob-
tained weights are normalized into the interval between 
0 and 1 if the normalized weight parameter is set to true.

Weight by support vector machine

In this operator, the attribute’s relevance is determined 
by calculating the weight for each attribute from the in-
put ExampleSet relative to the class attribute. The hyper-
plane coefficients are calculated by an Support Vector 
Machine (SVM) as attribute weights; this operator can 
be applied to multiple classes, as well.

Weight by principal component analysis

In Principal Component Analysis (PCA), an orthogo-
nal transformation is used for converting the observa-
tions of possibly correlated attributes into the values of 
uncorrelated attributes called “principal components”. 
This operator presents the weights of the attributes from 
the ExampleSet using a PCA-developed component and 
performs in the same way as a PCA model given to the 
weight by a component model. 

Feature selection for different feature weighting op-
erators

After measuring weighting models on each data set, 
each gene received a value between 0 and 1, and then the 
variables with higher ranks were selected.

Types of decision trees

Decision tree

A Decision Tree (DT) has a structure similar to a flow-
chart, where every internal node indicates a test of an 
attribute, and every leaf node presents a class label. The 
classification rules are determined by the root-to-leaf 
paths.

Random forest

Random decision forests [7] are an ensemble method 
for regression, classification, and other tasks via creating 
various DTs at training time and outputting the class that 
is the mode of the classes (classification) or mean predic-
tion (regression) of the individual trees. These random 
forests correct the overfitting of DTs on their training set.

Decision stump 

The tree shown in Figure 1 is a one-level DT [8]. This 
model has a root connected immediately to the end 
nodes. Prediction by a decision stump is based on the 
value of a single input attribute. Sometimes, these mod-
els are called 1-rules [9].

Tree induction models

The four trees including Decision Stump (DS), DT, 
Random Tree (RT), and Random Forest (RF) were run 
on 11 datasets. Each tree considers 4 criteria: informa-
tion gain, gain ratio, Gini index, and accuracy. Several 
combinational machine learning models were used, in-
cluding DT Gain Ratio, DT Information Gain, DT Gini 
Index, DT Accuracy, RT Information Gain, RT Gain Ra-
tio, RT Gini Index, RT Accuracy, DS Gain Ratio, DS In-
formation Gain, DS Gini Index, DS Accuracy, RF Gain 
Ratio, RF Information Gain, RF Gini Index, and RF Ac-
curacy. In the RF models for each criterion, 10 different 
trees were generated. With tree induction models, 572 
trees were induced.

Tandem repeat sequences 

The tandem repeat sequences of nucleotides were ob-
tained by the Microsatellite repeats finder tool. The fea-
tures for all extracted gene sequences were given.

Feature selection and different attribute weighting 
algorithms

After running different operators of feature weighing 
method on the data set, each feature of the gene gained 
a value between 0 and 1 with respect to the target gene. 
We selected the variables with a weight higher than 0.5 
as the best feature in the weighing model.

Creating new dataset and feature weighting algo-
rithms for trimming the main dataset

For the gene feature and tandem repeat datasets, 10 new 
datasets were created containing the attributes that were 
important in feature weighting algorithms. These feature 
weighting models were: Information Gain, Gini Index, 
Rule, Deviation, Correlation, Chi-Squared, Uncertainty, 
Relief, SVM, and PCA. These models were used as pre-
dictive trees. For the induction model of trees, we used 
11 datasets (10 weighing models and one main dataset).
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Tree induction models and analysis 

We ran all datasets with four tree induction models. 
As a result, 16 machine learning models were obtained 
mentioned in Section 2.5. For every criterion of the Ran-
dom Forest model, 10 trees were created. Using tree in-
duction models, a maximum of 572 trees was induced. 
For analysis of the datasets, we selected 10 important 
feature weighting models (Table 1).

Data analysis

The data were analyzed in GraphPad Prism v.6.0 soft-
ware using Analysis of Variance (ANOVA). A p-value 
less than 0.05 was considered statistically significant.

Results

Dataset

The gene features dataset includes the nucleotide fea-
tures of FOXO3a in different species, The dataset con-
sists of 30 species with 65 features and 51 tandem re-
peat datasets. The species included Human and Xenopus 
(n=3 for each); Monkey, Mouse, Orangutan, Pig, Anas, 
and Fish (n=2 for each); Anser, Bos taurus, Dog, Gorilla, 
Rabbit and Ovis (n=1 for each). 

Feature weighting 

The data were normalized prior to the model running. 
Different feature weighting models were run on the da-
tasets of tandem repeat and gene feature. The value of 
each features was between 0 and 1, and those with a 
weight greater than 0.5 were selected. Table 1 shows the 
important genome features in the different species. The 
frequency of AA dinucleotide was the most important 
feature which was selected by 67% of feature weight-
ing models (Table 1). Ten sequences of tandem repeats 
were selected as the most important attributes which 
included TTTTTTTTT, GAGGAGGAG, CGGCGGC-
GGCGG, CGGCGGCGGCGGCGG, AAAAAAAAA, 
AAAAAAAAAAAA, TTTTGTTTTGTTTTG, CGGC-
GGCGG, AAGAAGAAG, and GGAGGAGGAGGA 
(Table 2).  

Identification of genome feature dataset and tree in-
duction 

From 572 induced DTs with different induction models, 
the DT random forest was the best model when running 
with either information gain or Gini index criteria fil-
tered by “chi-squared” and “correlation” feature weight-
ing models in recognition of FOXO3a genes. Figure 1 
shows the DT random forest induction model ran with 
the information gain criterion when running on genome 

Figure 1. Identification of FOXO3a genes between different species using DT random forest induction model ran with informa-
tion gain criterion and filtered by chi-squared feature weighting model
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feature dataset filtered by the “chi-squared” model. This 
model shows the percentage of C as the main feature in 
FOXO3a separation. If the frequency of this feature is 
less than or equal to 24.150, it depends on the frequency 
of next feature (i.e. Count of AC). If the Count of AC is 
less than or equal to 295.500, the record is related to the 
Xenopus, but If it was more than 295.500, it belongs to 
salt 0.2 M. If salt 0.2 M was less than or equal to 89.185, 
the record belongs to human, and so on. 

Figure 2 shows the DT random forest model ran with 
the Gini index criterion on the dataset pre-filtered by the 
“correlation” feature weighting model. In this model, 
the frequency of TA and AA dinucleotides are the im-
portant features in different sequences of FOXO3a gene. 
The comparison of the accuracy of the different induced 
tree models with feature weighting models is shown in 
Table 2. As can be seen, the DT models of “RF Gain 
Ratio” and “RF Gini Index” had the highest mean ac-
curacy of 77.97% and 79%, respectively. Among the 

Figure 2. Identification of FOXO3a genes between different species using DT random forest induction model ran with the Gini 
index criterion and filtered by correlation feature weighting model

Figure 3. Identification of FOXO3a genes between different tandem repeats using DT random forest model ran with the ac-
curacy criterion filtered by: a. rule and b. Gini index feature weighting model
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Res Mol Med, 2020; 8(1):17-30

http://rmm.mazums.ac.ir/index.php?&slct_pg_id=10&sid=1&slc_lang=en


22

Figure 4. Plot of the mean frequency of AA and CT dinucleotide in different species

Table 1. Important genomic features of FoxO3a gene nucleotides with weights >0.5

Feature Rank Genomic Feature Number of Weighting Models With Important Fea-
tures (Weight >0.5)

1 Frequency of AA 6

2 Frequency of CG 5

3 Frequency of CT 5

4 Frequency of CC 5

5 Frequency of TT 5

6 salt 0.2 M 5

7 salt 0.3 M 5

8 salt 0.5 M 5

9 Frequency of C + G 5

10 Frequency of A + T 5

11 Weight 5

12 Frequency of carbon 4

13 Frequency of GT 4

14 Frequency of TG 4

15 Frequency of TC 4

16 Frequency of Thymine 4

17 salt0 .1 M 4

18 salt 0.4 M 4

19 Frequency of Cytosine 4

20 Frequency of nitrogen 4

21 Frequency of AG 4

22 Frequency of oxygen 4

23 Frequency of GC 4

24 Frequency of AT 4

25 Frequency of TA 4

26 Frequency of hydrogen 4

27 Frequency of GA 4

28 Frequency of Adenine 3

29 Frequency of Guanine 3

30 Frequency of AC 3
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feature weighting models for genome features, the “Cor-
relation” and “Information Gain” models had the highest 
mean accuracy (60 and 59.56%, respectively). Accord-
ing to this table, the highest accuracy of genomic fea-
tures (83.33%) was obtained by both induction models 
of “RF Information Gain” filtered by the chi-squared 
feature weighting model, and “RF Gini Index” filtered 
by correlation feature weighting model in comparison 
with the original dataset (without feature selection) and 
the dataset with feature selection (by feature weighting 
models).

Induced tree and Tandem repeat sequence fea-
tures

Figure 3 shows RF tree for tandem repeat sequences 
when run with the accuracy criterion on a dataset filtered 
by the “Rule” (Fig.3a) and the “Gini Index” (Fig.3b) 
feature weighting models. As shown in Table 3, the 
FOXO3A gene sequences of TTTTTTTTT, GAGGAG-
GAG, CGGCGGCGGCGG, and CGGCGGCGGCG-
GCGG were important features in different organisms. 
The accuracy of tree models in recognition of FOXO3A 
in difference species were compared with those of dif-
ferent feature weighting based on the tandem repeat 
sequences (Table 4). The RF Information Gain and RF 
Accuracy had the highest mean accuracy (59.28% and 
60.71%, respectively).

Original dataset vs. the dataset with feature selec-
tion

The most important point in both original (without 
feature selection) and the genomic dataset with feature 
weighting is their accuracy level. As shown in Table 3, 
the mean accuracy of the dataset with feature selection 
(by the correlation feature weighting model) increased 
by 1.5% compared to the dataset without feature selec-
tion (60% vs. 58.54%). For the tandem repeat dataset, 
Table 4 shows that the mean accuracy of the dataset 
with feature selection (by uncertainty attribute weight-
ing model) increased by 4.5% compared to the dataset 
without feature selection (34.82% vs. 30.36%). This in-
dicates the importance of feature weighting in prediction 
accuracy. 

Comparative analysis of ten key features 

By feature weighting, it was shown that the frequencies 
of TT, CG, and AA dinucleotides were highly variable 
in pig, anas, xenopus, and mouse species. The statistics 
of 10 selected main features in different organisms are 
shown in Table 5. This table presents the Mean±SD and 
Coefficient of Variance (CV). As can be seen, the fre-
quencies of CT, A+T, C+G and CC were more variable 
in pig samples. These genomic key features, selected 
from Table 1, were subjected to ANOVA between differ-
ent species. Its results showed that all selected features 
were significantly different among species (P≤ 0.05). As 
an example shown in Figure 4, the least mean frequency 

Table 2. Important genomic features of FOXO3a tandem repeat sequences with weights >0.5

Feature Rank Tandem Repeat Sequence Number of Models With
Important Features (Weight >0.5)

1 TTTTTTTTT 7

2 GAGGAGGAG 7

3 CGGCGGCGGCGG 7

4 CGGCGGCGGCGGCGG 7

5 AAAAAAAAA 6

6 AAAAAAAAAAAA 6

7 TTTTGTTTTGTTTTG 6

8 CGGCGGCGG 5

9 AAGAAGAAG 5

10 GGAGGAGGAGGA 5
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Table 3. Comparing the accuracy of different induction trees with different feature weighting models in identification of 
FOXO3a in difference spices (nucleotide feature database)

Feature Weighing 
Models

Induction Trees (%)

DT Gain 
Ratio

DT Informa-
tion Gain

DT Gini 
Index

DT 
Accu-
racy

RT Gain 
Ratio

RT Informa-
tion Gain

RT Gini 
Index

RT Ac-
curacy

DS Gain 
Ratio

Information Gain 60.00 80.00 70.00 56.67 60.00 63.33 63.33 36.67 40.00

Gini Index 60.00 80.00 73.30 56.67 46.67 63.33 60.00 36.67 40.00

Rule 56.67 80.00 73.33 50.00 60.00 70.00 70.00 36.67 36.67

Deviation 63.33 60.00 63.33 30.00 63.33 60.00 63.33 36.67 33.33

Correlation 60.00 80.00 70.00 63.33 63.33 66.67 60.00 36.67 40.00
Chi-squared 

statistic 60.00 80.00 70.00 56.67 43.33 63.33 70.00 36.67 40.00

Uncertainty 60.00 80.00 70.00 56.67 53.33 66.67 70.00 36.67 40.00

Relief 63.30 63.30 70.00 70.00 63.33 63.33 70.00 36.67 40.00

PCA 63.33 63.33 70.00 56.67 63.33 63.33 70.00 36.67 40.00

Wthout feature 
selection
(original
dataset)

60.00 80.00 70.00 56.67 53.33 66.67 63.33 36.67 40.00

Maximum accuracy 63.33 80.00 73.33 70.00 63.33 70.00 70.00 36.67 40.00

Minimum accuracy 56.57 63.00 63.33 30.00 43.33 60.00 60.00 36.67 33.33

Mean accuracy 60.66 74.66 70.00 55.34 57.00 64.67 66.00 36.67 39.00

Feature 
Weighing 
Models

Induction Trees (%)

DS Informa-
tion Gain

DS Gini 
Index

DS 
Accu-
racy

RF Gain 
Ratio

RF Infor-
mation 

Gain

RF Gini 
Index

RF Ac-
curacy

Maxi-
mum 
Accu-
racy 

Mini-
mum 
Accu-
racy 

Mean 
 Accu-
racy 

Information 
Gain 40.00 40.00 36.67 70.00 83.00 83.30 70.00 83.30 36.67 59.56

Gini Index 40.00 40.00 36.67 63.33 80.00 80.00 70.00 80.00 36.67 57.92

Rule 40.00 36.67 36.67 63.33 76.67 73.33 63.33 80.00 36.67 57.71

Deviation 36.67 36.67 36.67 60.00 70.00 76.67 60.00 76.67 33.33 53.13

Correlation 40.00 40.00 36.67 73.33 83.33 83.33 63.33 83.33 36.67 60.00

Chi-squared 
statistic 40.00 40.00 36.67 70.00 83.33 76.67 66.67 83.33 36.67 58.33

Uncertainty 40.00 40.00 36.67 73.33 80.00 80.00 63.33 80.00 36.67 59.17

Relief 40.00 40.00 33.33 56.67 76.67 80.00 83.33 83.33 33.33 59.37

PCA 40.00 40.00 33.33 70.00 73.33 76.67 73.33 76.67 33.30 58.33

Without 
feature selec-

tion
(original
dataset)

40.00 40.00 36.67 70.00 73.33 80.00 70.00 80.00 36.67 58.54

Maximum 
accuracy 40.00 40.00 36.67 73.33 83.33 83.33 83.33

Minimum 
accuracy 36.67 36.67 33.33 56.67 70.00 73.33 60.00

Mean ac-
curacy 39.67 39.33 36.00 67.00 77.97 79.00 68.33
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Table 4. Comparing the accuracy of different induction trees with different feature weighting models in identification of 
FOXO3a in difference spices (Tandem repeat sequences)

Feature 
Weighting 

Models

Induction Trees (%)

DT Gain 
Ratio

DT Infor-
mation 

Gain

DT Gini 
Index

DT Accu-
racy

RT Gain 
Ratio

RT Infor-
mation 

Gain

RT Gini 
Index RT Accuracy DS Gain 

Ratio

Information Gain 7.04 42.86 7.14 7.14 14.29 28.57 21.43 14.29 14.29

Gini Index 35.71 42.86 7.14 7.14 14.29 21.43 21.43 7.14 14.29

Rule 35.71 42.86 7.14 7.14 21.43 28.57 28.57 7.14 14.29

Deviation 35.71 35.71 7.14 7.14 21.43 21.43 21.43 14.29 14.29

Correlation 42.86 42.86 7.14 7.14 14.29 14.29 14.29 7.14 14.29

Chi-squre static 21.43 28.57 7.14 7.14 21.43 28.57 28.57 21.43 14.29

Uncertainty 35.71 42.86 7.14 7.14 28.57 28.57 28.57 28.57 14.29

Relief 28.57 28.57 7.14 7.14 21.43 21.43 21.43 21.43 14.29

PCA 7.14 21.43 7.14 7.14 7.14 21.43 21.43 7.14 14.29

SVM 35.71 28.57 7.14 7.14 21.43 21.43 21.43 21.43 14.29

Without feature 
selection (original

dataset)
35.71 42.86 7.14 7.14 21.43 28.57 28.57 7.14 14.29

Maximum accuracy 35.71 42.86 7.14 7.14 21.43 28.57 28.57 28.57 14.29

Minimum accuracy 7.14 21.43 7.14 7.14 7.14 14.29 14.29 7.14 14.29

Mean accuracy 28.56 35.72 7.14 7.14 18.57 23.57 22.86 15.00 14.29

Feature 
Weighting 

Models

Induction Trees (%)

DS  
Informa-
tion Gain

DS  
Gini 

Index

DS 
Accu-
racy

RF  
Gain 
Ratio

RF Infor-
mation 

Gain

RF Gini 
Index

RF 
Accuracy

Maximum 
Accuracy 

Mini-
mum 

Accuracy 

Mean  
Accuracy 

Information Gain 14.29 14.29 14.29 57.14 78.57 71.43 71.43 78.57 7.04 29.91

Gini Index 14.29 14.29 14.29 50.00 57.14 64.29 78.57 78.57 7.14 29.02

Rule 14.29 14.29 14.29 64.29 71.43 64.29 78.57 78.57 7.14 32.14

Deviation 14.29 14.29 14.29 50.00 35.71 42.86 42.86 50.00 7.14 24.55

Correlation 14.29 14.29 14.29 50.00 57.14 57.14 57.14 57.14 7.14 26.79

Chi-squre static 14.29 14.29 14.29 35.71 35.71 35.71 35.71 35.71 7.14 22.77

Uncertainty 14.29 14.29 14.29 64.29 78.57 71.43 78.57 78.57 7.14 34.82

Relief 14.29 14.29 14.29 50.00 57.14 57.14 57.14 57.14 14.29 27.23

PCA 14.29 14.29 14.29 42.86 42.86 42.86 42.86 42.86 7.14 20.54

SVM 14.29 14.29 14.29 64.29 78.57 71.43 64.29 78.57 14.29 31.25

Without feature 
selection (original

dataset)
14.29 14.29 14.29 57.14 57.14 57.14 78.57 78.57 7.14 30.36

Maximum ac-
curacy 14.29 14.29 14.29 64.29 78.57 71.43 78.57

Minimum ac-
curacy 14.29 14.29 14.29 35.71 35.71 35.71 35.71

Mean accuracy 14.29 14.29 14.29 52.86 59.28 57.86 60.71
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Table 5. Statistics of 10 main genomic features for different species selected by feature weighting models

Genomic Feature Species Mean±SD Variance CV

Frequency of AA

Anas 0.0675±0.0177 0.0003 26.22

Human 0.0822±0.0032 0.0000 3.89

Monkey 0.072±0.0028 0.0000 3.89

Mouse 0.051±0.0113 0.0001 22.16

Orangutan 0.074±0.0014 0.0000 1.89

Pig 0.06±0.0368 0.0014 61.33

Xenopus 0.0817±0.0059 0.0000 7.22

Frequency of CG

Anas 0.05±0.0057 0.0000 11.40

Human 0.0203±0.0068 0.0000 33.50

Monkey 0.034±0.0042 0.0000 12.35

Mouse 0.0515±0.0163 0.0003 31.65

Orangutan 0.0345±0.0035 0.0000 10.14

Pig 0.055±0.0283 0.0008 51.45

Xenopus 0.0187±0.0067 0.0000 35.83

Frequency of CT

Anas 0.0635±0.0007 0.0000 1.10

Human 0.0724±0.0022 0.0000 3.04

Monkey 0.071±0.0000 0.0000 0.00

Mouse 0.0755±0.0007 0.0000 0.93

Orangutan 0.0705±0.0007 0.0000 0.99

Pig 0.0695±0.0092 0.0001 13.24

Xenopus 0.0703±0.0006 0.0000 0.85

Frequency of A + T

Anas 0.462±0.0283 0.0008 6.13

Human 0.5381±0.0167 0.0003 3.10

Monkey 0.5015±0.012 0.0001 2.39

Mouse 0.4295±0.0544 0.0030 12.67

Orangutan 0.5005±0.012 0.0001 2.40

Pig 0.425±0.1004 0.0101 23.62

Xenopus 0.5557±0.034 0.0012 6.12

Frequency of TT

Anas 0.055±0.0127 0.0002 23.09

Human 0.0848±0.0058 0.0000 6.84

Monkey 0.077±0.0028 0.0000 3.64

Mouse 0.0495±0.0191 0.0004 38.59

Orangutan 0.0755±0.0021 0.0000 2.78

Pig 0.051±0.041 0.0017 80.39

Xenopus 0.0860±0.0125 0.0002 14.53
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Genomic Feature Species Mean±SD Variance CV

Salt 0.2 M

Anas 91.945±1.1667 1.3612 1.27

Human 88.8289±0.683 0.4665 0.77

Monkey 90.33±0.495 0.2450 0.55

Mouse 93.29±2.2062 4.8673 2.36

Orangutan 90.37±0.495 0.2450 0.55

Pig 93.465±4.1224 16.9942 4.41

Xenopus 88.1033±1.3967 1.9508 1.59

Salt 0.3 M

Anas 94.865±1.1667 1.3612 1.23

Human 91.7522±0.6839 0.4677 0.75

Monkey 93.255±0.502 0.2520 0.54

Mouse 96.21±2.2062 4.8673 2.29

Orangutan 93.295±0.4879 0.2380 0.52

Pig 96.385±4.1224 16.9942 4.28

Xenopus 91.0267±1.3929 1.9402 1.53

Salt 0.5 M

Anas 98.55±1.1597 1.3449 1.18

Human 95.4333±0.6837 0.4674 0.72

Monkey 96.935±0.502 0.252 0.52

Mouse 99.89±2.2062 4.8673 2.21

Orangutan 96.975±0.4879 0.238 0.50

Pig 100.065±4.1224 16.9942 4.12

Xenopus 94.71±1.3986 1.9561 1.48

Frequency of C + G

Anas 0.538±0.0283 0.0008 5.26

Human 0.4619±0.0167 0.0003 3.62

Monkey 0.4985±0.012 0.0001 2.41

Mouse 0.5705±0.0544 0.003 9.54

Orangutan 0.4995±0.012 0.0001 2.40

Pig 0.575±0.1004 0.0101 17.46

Xenopus 0.4443±0.034 0.0012 7.65

Frequency of CC

Anas 0.0795±0.012 0.0001 15.09

Human 0.0638±0.0036 0.0000 5.64

Monkey 0.0725±0.0035 0.0000 4.83

Mouse 0.0915±0.0191 0.0004 20.87

Orangutan 0.0735±0.0049 0.0000 6.67

Pig 0.0895±0.0205 0.0004 22.91

Xenopus 0.055±0.0053 0.0000 9.64
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of AA and the highest mean frequency of CT dinucleo-
tide were observed in mouse species.

Discussion

FOXO3a gene belongs to the O subclass of FOXs. 
These factors have different roles in a wide range of 
physiological processes such as tumor suppression, cel-
lular differentiation, cell cycle arrest, metabolism, pro-
tection against stress, and cell death [10]. The deregu-
lation of FOXO3a is associated with tumorigenesis. Its 
activity is often seen in cancers. It is a valuable target 
for cancer and gene therapies, suggesting that therapies 
might be effective in blocking tumor expansion and me-
tastasis [11]. Genetics and genomics help in sequencing 
and finding their mutations.

KayvanJoo et al. (2014) showed that bioinformatics and 
nucleotide attributes of hepatitis C virus (e.g. count of 
hydrogen and CG) is associated with treatment outcome 
[12]. Tahrokh et al. (2011) by study of a large number of 
structural protein specification, showed that data mining 
algorithms is a novel functional strategy for studying the 
evolution [13]. Two different databases were used in our 
study to find a method for examining the structural dif-
ferences in the Foxo3a gene of different organism; one 
database was based on nucleotide features and one based 
on the tandem repeat sequences of the gene. For this 
study, we used feature weighting algorithms.

These algorithms showed the importance of each fea-
ture in different organisms. In these algorithms, it was 
shown that the sequence of CGGCGGCGGCGGCGG is 
an important feature to build the trees to distinguish be-
tween gorilla, human and other organisms. The dinucleo-
tide frequency is important in the phylogenetic structure 
of Foxo3a genes. The FOXO3a gene has important roles 
in different organisms. Recognition of FOXO3a gene is 
a critical step for identification. expression and regula-
tion. Identifying the expression of human FOXO3a gene 
can provide information on the spread of cancer cells. 
Therefore, it can be identified with new criteria based 
on bioinformatics and genomic properties in different or-
ganisms that are very important for therapeutic purposes, 
such as cancer and gene therapies.
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